116

INZHENERNO-FIZICHESKII ZHURNAL

MASS TRANSFER BETWEEN STREAMS OF LIQUID AND VAPOR DURING

EVAPORATION FROM CAPILLARIES

A. M. Globus and B, M, Mogilevskii

Inzhenerno~- Fizicheskii Zhurnal, Vol. 11, No. 2, pp. 211-216, 1966

UDC 536, 246

We have estimated the degree of departure from one-dimensionality
of the relative humidity field during evaporation from a capillary,
allowing for interaction of the vapor and 1iquid phases according to
the Deryagin-Nerpin-Churaev theory, The boundary conditions for
the non-one-dimensional problem have been formulated, An analyti-
cal solution has been obtained for a non-one-dimensional relative
humidity field in 2 capillary under simptifying assumptions,

For a long time the transfer to the atmosphere of
moisture sitnateddeep in a capillary has been regarded
as the motion of molecules evaporated from the me-
niscus of a liquid [1]. Appreciable contradictions be-
tween theory and experiment [3] have often been ob-
served. The authors of references [4-6] have pointed
out that the observed laws of evaporation from cap-
illaries can be explained by the fact that, in addition
to the above process in the transfer of mass to the
capillary outlet, a part may be played by a stream of
liquid caused by the disjoining pressure gradient [7],
flowing in a film over the capillary walls. A consider-
able fraction of the total mass flux from the capillary
is that due to evaporation from the film, Thus, phase
transformations at the interface between film and
vapor are a substantial component of the intracapillary
mass transfer process, and in general a direct allow-
ance should be made for interphase transfer.

In some cases (for example, for capillaries with a
considerable ratio of distance from meniscus to cap-
illary outlet ! to radius R, with large drops of rela-
tive humidity ¢ between the meniscus and the outlet)
there is reason to suppose that the rate of evaporation
from the surface of the liguid film is small, and the
gradients of ¢ over a cross section of the capillary
are small in comparison with gradients of ¢ in the
longitudinal direction. The process of intracapillary
mass transfer in systems like this may be regarded,
with sufficient approximation, as one-dimensional,
while mass transfer between the liquid and the vapor
is accounted for by introducing the condition of con-
stant total flux of both phases at every section of the
capillary. An analysis based on these assumptions
was conducted in [4—6]. The question of the applica-
bility of the numerical results of this analysis to spe-
cific conditions is closely connected with the degree
of approximation of the field ¢ in these conditions to
the one-dimensional,

We will examine the model (see figure) used in
references [4—6). Evaporation from a single capillary
of radius R in the steady regime under isothermal
conditions proceeds in such a way that the distance
between the meniscus and the capillary outlet is con-
stant. The capillary walls are covered by a film of
liquid of thickness h, and the relative humidity of the

air over the meniscus and the outlet of the capillary
is constant.

A tentative estimate of the degree of one~-dimension-
ality of the field of ¢ in the capillary may be obtained
as follows. Since the angle of inclination of the film
surface to the capillary axis is small, regarding the
film as one-dimensional, we may write down the flow
of liquid in the film as
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The x axis is directed along the capillary axis from
the outlet to the meniscus.

The connection between ¢ and the disjoining pres-
sure II in the film is given by the well-known equation
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The total increment of vapor flow in the whole distance
1 is equal to the difierence in liquid flow in the film
between the level of the meniscus and the outlet. At
the same time, this increment Agy is equal to the
product of the conductivity of the vapor phase Ly and
the radial gradient 8¢/dr, averaged over the phase
interface, and the area of the phase interface area
from meniscus to outlet:
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From (3) it follows that
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The condition of one-dimensionality has the form

do
ox

Jp
dr
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The degree of one-dimensionality of the field ¢ at
the level of plane x is determined by Wy:

do |, |9 | - L _
Wx"l or l ° ‘ ox L‘ 27!Rl (6)
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The ratios of the gradients entering into (6) is given
approximately from the equation

dp
X
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We designate L; /27R?Ly = H, and, putting Ly ¢ ~
~ Ly m ® Ly x ® Ly, we write (6) in the form

R _QH.+1)(Hy—Hy)

I (2H,+ 1)(2Hy -+ 1)
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It is evident that the ¢ field may be made one-dimen-
sional only in the region Wy < 1. We put Wy < 0.1,
Then the region of one-dimensionality of the field is
determined by the condition

H,—H, 2H°+1[ [ °H ]
p =Q< o i1 —ZTm___1|.(7)
, U< on, R H —H,

Assuming the values used in [4] for the appropriate
parameters, we find that when R = 107% em, Hpy ~
~ 500, When ¢y ~ ¢, = 1
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Then condition (7) may be written in the form

P g 2@t D
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In particular, when ¢, = 0.9, I/R =10, R =10"° cm,
0.9 = ¥ <0.95.

Thus, the inequality (7) permits us to estimate the
range of variation of ¢, from the total drop A¢ = @,
where the one-dimensional approximation is allowable.
In the special case where we are directly at the me-
R H,—H,

I 2H,+1
and ¥o = 0.9 Wx = 50 R/I, i.e., the deviation of the
field from the one-dimensional is large. At the same
time, it is precisely in the region near the meniscus
that there are especially large variations in the thick-
ness of the film with height, so that evaporation from
the film makes a relatively large contribution to the
total flow,

If we estimate this contribution on the basis of con-
siderations similar to the foregoing, we obtain

niscus, ¥, = and when R = 1079 em

Agl 2/ D810 = Hy—H,)(2H,+ 1)/ (Hyp— Ho) (2H, + 1)

Thus, for ¢, = 0.9, I/R =10, R=10"% cm Agy, x/
/Agl’o ~ 0.4,

In other words, the contribution to the total flow
of moisture due to evaporation from the film in the
region where the field ¢ is not one-dimensional is
quite large, and, in such cases of analysis of intra-
capillary mass transfer, it is necessary to allow for
mass transfer between the phases in explicit form.

With this objective the condition of total flow of
liquid and vapor at any cross section of the capillary
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should be replaced by the condition of conservation
of mass, applied at the vapor-film interface,

%81 onR—t) —PPM_ rad ¢ (8)
ox R.T(Pip,— o)

Here grad, ¢ is the gradient of Q in the direction of

the interior normal to the film.
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Capillary model with
a wetting film in which
the distance from the
meniscus to the outlet
remains constant [3].

For simplification, we will examine the region
0 = x <] in the capillary with plane surfaces at x =
=0andx=1. We assume thatx =], ¢ = ¢,, and
when x = 0, ¢ = ¢; (¢; is the given relative humidity
of the air in the surrounding medium). According to
the condition of conservation of mass in the capillary,

div.grad g, = 0. 9)

Taking the nonlinear part of (9) to be small, we write
div-gradg = 0. (10)

When R > h or when there is little variation in
film thickness along the capillary (when [h(l) — h(0)}/
/1 < 1), the intracapillary vapor region may be ap-
proximated by a cylinder. Then grad, ¢ = —grad, ¢,
and condition (8) may be written in the form

— %8l _orr—py—DPM 9% (qy)
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In differentiating (1) we take into account variation
of h(x) and ¢ along the length of the capillary. With-
out allowing for the ion-electrostatic component of
the disjoining pressure, h = 13/ ®/11, where k is con-
stant, and

ox 3MIlg  ox

We introduce the new variables £ =x/I, n=1r/R,
the function U = ¢ — ¢, and designate ¢, — ¢ = &,
In the new variables Eq. (11) with the appropriate
boundary conditions may be written as

U LW R Uy
on? n 0n 2 Qg




118
Z:;D" Ei }0\<n<1, (14)
RO ERy W
roog 9 I 3 an
y— PRIk (15)
OM  h—h,

An analytical solution of the problem, with bound-
ary conditions (14) and (15), is in general impossible
because of the great mathematical difficulties. But
we may obtain such a solution by making a number
of approximations.

We make the following assumptions:

2
1. The coefficients of *u and (il—{ in the bound-
aE? ag

ary condition (15) are constant and are assumed equal
to their mean values along the capillary.

2, The nonlinear term in (15) is small and is taken
into account as a perturbation in solving the problem
by the method of successive approximations. Because
of these assumptions, the examination is limited to
the case of small changes of ¢ along the capillary
(®/¢ < 1), and to small interchanges between the
liquid and vapor-phase flows,

The solution of (13), with the appropriate boundary
conditions and the above assumptions, gives the fol-
lowing first-order approximation for the ¢ field in the
capillary:
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where @y are the roots of the equation I{ay) = —Hoy X
x Io{am); Ty(m), I1(n) are Bessel functions of the first
kind and of order zero and one.

The increment of vapor flow along the capillary due
to evaporation from the film is given by

9n R?p2 (h — ho)* R,TV @2
3vMg? [l 4 2H]1

[I—H——E Bt ﬁ”

It follows from the form of (16) that the equipoten-
tial lines of the field of ¢ in the capillary have a con-
vex curvature toward the meniscus. For physical con-
ditions in which assumptions 1 and 2 are valid, the
curvature of the equipotential lines is insignificant.

In the general case the solution of the problem of
mass transfer between phases during evaporation
from a capillary may be obtained numerically by ap-
plying the boundary conditions indicated.

Agy=—Ag;=

L, ] . (17

NOTATION

¢ is the relative humidity of air; I is the capillary
length; R is the capillary radius; R is the universal
gas constant; M is the molecular weight of water; v
is the viscosity of water; p is the density of water; ¢
is the surface tension of water; h is the thickness of
film of water on capillary wall; h, is the thickness of
stationary film of water; II is the disjoining pressure
of water in film; g is the flux density; L is the phase
conductivity; D is the diffusion coefficient for water
vapor in air; P is the barometric pressure; pg is the
pressure of saturated water vapor; T is the tempera-
ture. Subscripts v, ! denote, respectively, vapor and
liquid phases; o and m are the coordinates of the out-
let and the meniscus of the capillary,
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